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Abstract

Hospitals are typically optimized to operate near capacity, and
there are serious concerns that our healthcare system is not pre-
pared for the next pandemic. Stockpiles of different supplies,
e.g., personal protective equipments (PPE) and medical equip-
ment, need to be maintained in order to be able to respond to
any future pandemics. Large outbreaks occur with a low prob-
ability, and such stockpiles require big investments. Further,
hospitals often have mutual sharing agreements, which makes
the problem of stockpiling decisions a natural game-theoretical
problem. In this paper, we formalize hospital stockpiling as
a game-theoretical problem, HSTOCKPILE. We use the no-
tion of pairwise Nash stability as a solution concept for this
problem, and characterize its structure. We show that stable
strategies can lead to high unsatisfied demands in some sce-
narios, and stockpiles might not be maintained at all nodes.
We show that stable strategies and the social optimum can be
computed efficiently.

1 Introduction

Large disease outbreaks can place a very significant burden
on the healthcare infrastructure, as recent Ebola and 2009
H1N1 influenza epidemics have shown. Hospitals and other
healthcare facilities are optimized for a baseline level of pa-
tient demand. Even a slight increase in the infection rate
can lead to a significant surge in patient visits, e.g., as in the
case of the first 40 weeks of the 2009 Flu outbreak, when
the number of patient visits increased by 4% over the base-
line (DeLaurentis, Adida, and Lawley 2011). Handling such
a surge would require significant level of planning for dis-
aster events and investments to handle the surge in patient
demand— this includes medical equipment (e.g., personal
protective equipments (PPE), patient care supplies), medi-
cations such as anti-virals, hospital facilities and healthcare
personnel (ton ). The CDC and other regional and national
public health agencies have developed guidelines for invest-
ments in stockpile levels. However, it is challenging for
healthcare companies to make huge investments for handling
such a surge, especially because of its variable and stochastic
nature. In order to amortize the cost of such investments,
and since the patient demand at an individual hospital might
vary widely, it is common for hospitals to engage in sharing
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agreements (e.g., (Stier and Goodman 2007)). This allows
them to buy or sell supplies, based on mutual agreements. A
fundamental problem is how should hospitals decide on their
initial stockpile levels, and how should they trade supplies
based on an outbreak? How should the government design
incentives (or penalties), so that the health infrastructure is
best prepared for pandemic outbreaks?

These are natural game-theoretical problems and DeLau-
rentis et al. (DeLaurentis, Adida, and Lawley 2011) develop
the first non-cooperative game formulation for the hospital
stockpiling problem. In their formulation, each hospital i
needs to decide on its stockpile level si. The epidemic out-
break is assumed to be a distribution over a small number of
scenarios, with D(i, �) denoting the patient demand at hospi-
tal i in scenario �. A hospital i has surplus of D(i, �)− si if
si > D(i, �) and a deficit of si −D(i, �) if si < D(i, �). It
is assumed that surplus at any hospital i can be sent to any
other hospital j, at some cost. Further, a hospital i has to
pay a penalty p for each unit of patient demand that is not
satisfied. (DeLaurentis, Adida, and Lawley 2011) study the
structure of Nash equilibria in such a game, and find that they
can be fairly inefficient.

While the work of (DeLaurentis, Adida, and Lawley 2011)
provides the first formal approach to study the issues of stock-
piling, they abstract out many realistic aspects—one of these
is the network structure among the hospitals, so that their
might be a limit cap(i, j) on how much supplies can be traded
between hospitals i and j. This might also affect the cost
Cij of trading supplies between the hospitals. As studied in
(Lee et al. 2011; Donker, Wallinga, and Grundmann 2010;
Simmering et al. 2015), there is a clear network structure
among hospitals, which plays a role in the patient referrals
across hospitals. The role of this network structure has been
studied extensively in studying and controlling the spread of
hospital acquired infections. Such interactions require prior
agreements, which will play a role in sharing stockpiles, in
the event of pandemic outbreaks.

In this paper, we extend the work of (DeLaurentis, Adida,
and Lawley 2011) to incorporate a much more realistic stock-
piling problem with network based sharing constraints. This
takes the first step towards addressing one of the extensions
suggested by them on considering “. . . implementable con-
tracts among hospitals and possibly involving government in
a transfer payment scheme . . .”. Our contributions are:
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1. We formalize the hospital stockpiling game problem
(HSTOCKPILE) with network capacity constraints as a
non-cooperative game. This captures much more realistic
network constraints.

2. We use the notion of pairwise Nash stability and character-
ize stable strategies. We find that generally deficits remain
in stable strategies, depending on the stockpiling costs and
penalty for deficits. The nodes that select to stockpile form
a dominating set in the graph, under certain conditions.
Further, link capacities have a very significant impact on
the efficiency of stable solutions.

3. We show that any local optimum is a stable solution, and
that a social optimum (a minimum cost stable solution)
can be found using a linear programming approach. We
use this method to find the solutions in a hospital network
in the state of North Carolina, and observe that there are
significant levels of deficits in practice. Our results suggest
the need for improved strategies, such as subsidies to help
reduce the deficits and ensure better preparedness.

2 Preliminaries and Model

Let V denote a set of hospitals in a region, which needs to
make decisions about their individual stockpile level. We
refer to each hospital i ∈ V as a node. Since epidemic
outbreak is a stochastic process, as in (DeLaurentis, Adida,
and Lawley 2011), we assume a set D of scenarios, with a
patient demand of D(i, �) for hospital i in scenario � ∈ D.
Let q� denote the probability of scenario �. Let Ci denote
the per unit cost of stockpiling for hospital i, and Cij the
per unit cost of sharing between the hospitals i and j. We
assume Cij = Cji. C denotes the vector of all costs. We let
cap(i, j) denote the maximum amount of supplies that can
be sent from i to j. We let G = (V,E) denote the hospital
network with E = {(i, j) : cap(i, j) > 0} denoting the set
of edges with positive trading capacity.

The main objective is to determine the stockpile level s(i)
for each hospital i ∈ V . Let Ci denote hospital i’s per
unit cost of maintaining the stockpile. Since the patient de-
mand D(i, �) might vary with the scenario �, there might be
scenarios � for which D(i, �) > s(i). In this case, hospi-
tal i can buy supplies from other hospitals j, at a per-unit
cost of Cji. Let s(j, i, �) and s(i, j, �) denote the amount
bought by hospital i from hospital j, or sold by hospital i
to hospital j, for scenario �, respectively. These must sat-
isfy the capacity constraints, so that s(i, j, �) � cap(i, j)
for all i, j, �. Let s(i, �) = s(i)−∑

j �=i s(i, j, �) denote the
amount of supplies available at node i in scenario �. Also, let
sout(i, �) =

∑
j �=i s(i, j, �) and sin(i, �) =

∑
j �=i s(j, i, �)

denote the total amount of supplies sold and purchased by i,
respectively. Then,

def(i, �) = max{D(i, �)− s(i, �) + sin(i, �), 0}
is the patient demand that is not satisfied at node i in scenario
� (referred to as the deficit at node i in scenario �). We
assume there is a penalty p for each unit of demand that is
not satisfied. We assume that for each i, j,

Ci � Cij � p,

so that node i is always better off purchasing supplies in case
of a deficit, instead of paying a penalty.
The HSTOCKPILE game. An instance of HSTOCKPILE
consists of a tuple (G, cap,C,D, p). We consider a non-
cooperative setting, in which the strategy of each hospital is
the initial stockpile s(i), and the amount s(j, i, �) or s(i, j, �)
it buys or sells from other hospitals j. The game is played in
the following manner:

1. Before the start of the epidemic: initially each node i
decides its stockpile level s(i). Each pair of nodes i, j
decide on the amounts s(i, j, �) and s(j, i, �), for each
scenario �.

2. The epidemic spreads as a stochastic process, and each
scenario � occurs with probability q�, leading to a demand
D(i, �) for hospital i. If scenario � occurs, nodes i, j trade
s(i, j, �) or s(j, i, �) amount between themselves.

3. Node i incurs cost

cost(i, s) = s(i)Ci +
∑

�

q�
∑

j �=i

s(j, i, �)Cji

−
∑

�

q�
∑

j �=i

s(i, j, �)Cij +
∑

�

q�pmax{0, def(i, �)}

For succinctness, we use s(·) to denote the entire strat-
egy profile, consisting of the stockpile amounts s(i) and the
traded amounts s(i, j, �) in each scenario.

Stable strategies and social optimum

For a strategy profile s(·), the pairwise strategy s(i, j, �)
needs to be jointly decided by both i and j. Therefore, the
standard notion of Nash equilibria (NE), which is based on
no single individual having incentive to deviate unilaterally
(Leyton-Brown and Shoham 2008) is not suitable here. In-
stead, we use a notion of pairwise Nash stability, which has
been studied for network formation games (see, e.g., (Jack-
son 2008; Blume et al. 2012))— in this notion, a strategy
is stable if no pair of players have incentive to deviate. We
apply this notion to the HSTOCKPILE problem. We say that
a strategy s(·) is stable if the following conditions hold:
1. No node i can reduce its cost by unilaterally changing its

stockpile s(i), while keeping all the s(i, j, �) unchanged,
for j �= i. Changing s(i) without changing s(i, j, �) or
s(j, i, �) has the effect of changing s(i, �).

2. There is no pair of nodes i, j such that changing s(i, j, �),
s(j, i, �), s(i) or s(j), while all other components of s(·)
are fixed, does not increase the cost for either i or j, and
reduces the cost for at least one of them.
Formally, strategy s(·) is stable if:

1. For all i ∈ V , we have cost(i, s′) � cost(i, s), where s′(·)
is any strategy such that

(a) For all j �= i: s′(j) = s(j)

(b) For all i′ �= j′, s′(i′, j′, �) = s(i′, j′, �).
2. For all i, j ∈ V , either (a) cost(i, s′) > cost(i, s) or

cost(j, s′) > cost(j, s), or (b) cost(i, s′) � cost(i, s) and
cost(j, s′) � cost(j, s), where s′(·) is any strategy such
that
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Figure 1: Example of an instance of HSTOCKPILE: V =
{1, 2}, E = {(1, 2)}. D consists of four scenarios, as shown
in the table, each with probability 1/4. The table gives the
patient demands D(i, �) are shown for each i = 1, 2. We
have Ci = 1 for i = 1, 2, C12 = 1.5 and p = 2.

(a) For all i′ �= i, j, s′(i′) = s(i′)
(b) For all {i′, j′} �= {i, j}, i′ �= j′: s′(i′, j′, �) =

s(i′, j′, �).
We define the social optimum as a strategy s(·) that has the

minimum cost, over the space of all possible strategies— this
might, in general, not be a stable strategy. Therefore, the cost
of a stable strategy relative to the cost of the social optimum
is an important measure, and the maximum such ratio over
all possible stable strategies is known as the price of anarchy
(Koutsoupias and Papadimitriou 1999).
Example. Figure 1 gives a simple example of HSTOCKPILE.
First, consider the case cap(1, 2) = 0, which corresponds to
the two nodes being isolated. Consider a strategy s(·) with
s(1) = s(2) = 100 and s(i, j, �) = 0. We have def(1, 1) =
def(1, 2) = 0, def(1, 3) = 100, def(1, 4) = 200. Therefore,
in this case, cost(1, s) = 1 · 100 + 2

4 (0 + 0 + 100 + 200) =
250. Similarly, cost(2, s) = 250. For strategy s′(·) with
s′(1) = s′(2) = 50, and s′(i, j, �) = 0 for all i, j, �, we have
def(1, 1) = 0, def(1, 2) = 50, def(1, 3) = 150, def(1, 4) =
250. Therefore, cost(1, s′) = 50+ 2

4 (0+50+150+250) =
275. Similarly, cost(2, s′) = 275. It can be verified that s(·)
is the social optimum in this case. Next, consider the case
where cap(1, 2) = 50. Let s′′(·) be a strategy defined in the
following manner: s′′(1) = s′′(2) = 100, s′′(1, 2, 1) = 50,
s′′(2, 1, 3) = 50. In this case, we have cost(1, s′′) = 1 ·
100 + 1

4 · 50 · 1.5 + 2
4 (0 + 0 + 50 + 200) = 243.75.

3 Related Work

Because of the major challenges posed by infectious dis-
eases, all aspects of real time epidemiology and public health
policy planning are very active areas of research (see, e.g.,
(Marathe and Vullikanti 2013)). We will focus our discussion
here on different approaches for controlling the spread of
epidemics, and especially those that involve game-theoretic
and optimization based approaches.

Much of the efforts on controlling epidemics has focused
on individual level interventions, e.g., distributing vaccina-
tions and anti-virals (referred to as Pharmaceutical interven-
tions (PI)), or methods to reduce transmission, such as by
closing schools and social distancing (referred to as Non Phar-
maceutical Interventions (NPI))— see (Meyers and Dimitrov
2010; Halloran et al. 2008) for discussion of these meth-
ods. Since individuals incur a cost in implementing such
interventions, and they can be protected if enough other indi-
viduals follow them, these are naturally amenable to game

theoretical analysis. Much of this work has been based on
differential equation methods, e.g., (Bauch and Earn 2004;
Reluga and Galvani 2011). While these works enable rig-
orous analysis, they do not capture the realistic mixing
patterns in social contact networks. This has motivated
the study of vaccination games on network models, e.g.,
(Aspnes, Chang, and Yampolskiy 2006; Kumar et al. 2010;
Saha, Adiga, and Vullikanti 2014). Computing efficient
equilibria and socially optimal strategies turns out to be a
very challenging problem, in general. An alternative ap-
proach has been to use spectral properties of networks for
characterizing and controlling epidemic spread, e.g., (Saha,
Adiga, and Vullikanti 2014; Omic, Orda, and Mieghem 2009;
Trajanovski et al. 2015).

The focus of our paper is not on the decision making at an
individual level, but at the level of hospitals and healthcare
facilities. Hospital networks have been studied quite exten-
sively, especially in the context of controlling the spread
of Methicillin-Resistant Staphylococcus Aureus (MRSA)
and other hospital-acquired infections, e.g., (Lee et al. 2011;
Donker, Wallinga, and Grundmann 2010; Simmering et al.
2015). There also has been work on designing interventions
for controlling epidemics at the level of hospital networks,
e.g., (Prakash et al. 2013).

However, the problems of pandemic preparedness, such
as stockpiling, remain relatively unexplored, especially
from a formal game-theoretical perspective. The stockpil-
ing problem is a special case of inventory modeling prob-
lems in economics and Operations Research, e.g., (Meca
et al. 2004). To the best of our knowledge, the first for-
mal analysis of these problems is by (DeLaurentis 2009;
DeLaurentis, Adida, and Lawley 2011), who identifies many
key problems in this topic. However, (DeLaurentis, Adida,
and Lawley 2011) do not consider network constraints and
only consider individual level decisions in their game formu-
lations, which does not consider the incentives for a pair of
hospitals to share supplies. Our paper is the first formaliza-
tion of this problem.

4 Characterizing and computing stable

strategies and the effect of network

structure

We now discuss some structural properties of stable strategies,
and the effects of network structure.

Lemma 1. Consider an instance (G, cap,C,D, p) of
HSTOCKPILE. For any stable strategy s(·), the following
conditions hold:

1. For each i, we have Ci = pPr[def(i, �) > 0] =
p
∑

�:def(i,�)>0 q�.

2. For each i, j, � such that s(i, j, �) > 0, then: (a) either
s(i, �) � D(i, �) − sin(i, �) or s(i, j, �) = cap(i, j) or
def(j, �) = 0, and (b) either def(i, �) = 0 or Cj �
pPr[def(j, �) > 0].

Proof. The proof follows from the definition of stability. Re-
call that cost(i, s) = Cis(i) +

∑
� q�pmax{0, def(i, �)} +

z(i, s), where z(i, s) =
∑

� q�
∑

j �=i s(j, i, �)Cji −
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Figure 2: An instance of HSTOCKPILE with multiple stable
solutions: V = {1, 2, 3}, E = {(1, 2), (2, 3)}. D consists of
two scenarios, as shown in the table, each with probability
1/2. The table gives the patient demands D(i, �) are shown
for each i = 1, 2. We have Ci = 1 for i = 1, 2, 3, C12 =
C23 = 2 and p = 3.

∑
� q�

∑
j �=i s(i, j, �)Cij . Let s′(·) be a strategy in which

s′(i) = s(i) + ε, with all the other components being
the same as in s. Then, cost(i, s′) − cost(i, s) = Ciε −∑

�:def(i,�)>0 q�pε = (Ci − pPr[def(i, �) > 0])ε. Since
s(·) is stable, node i has no incentive to increase s(i),
which implies that C � pPr[def(i, �) > 0]. Similarly,
since node i has no incentive to decrease s(i), we have
Ci � pPr[def(i, �) > 0], and (1) follows from that.

For (2), we have cost(i, s) = Cis(i) − q�Cijs(i, j, �) +
z1(i, �) and cost(j, s) = Cjs(j) + q�Cijs(i, j, �) + z2(j, �),
where z1(i, �) and z2(j, �) are the remaining terms of the
respective cost functions. If s(i, �) > D(i, �) − sin(i, �),
def(j, �) > 0 and s(i, j, �) < cap(i, j) then increasing
s(i, j, �) (which is possible since s(i, j, �) < cap(i, j)) is
better for both nodes i and j: (i) this lowers −q�Cijs(i, j, �)
without affecting def(i, �) or other components in cost(i, s),
(ii) since def(j, �) > 0 and Cij � p, this leads to reduction
in cost(j, s), without affecting other components. There-
fore part (a) holds. Next, suppose def(i, �) > 0 and Cj �
pPr[def(j, �) > 0], decreasing s(i, j, �) is better for both i
and j: this would reduce def(i, �) thereby lowering cost(i, s),
since Cij � p. Further, since Cj � pPr[def(j, �) > 0], node
j is better off increasing s(j) and using it to lower the total
deficits at node j. Therefore (b) holds.

Multiple stable solutions. Stable solutions are not unique
for an instance of HSTOCKPILE, in general. This is illus-
trated in the instance in Figure 2. It can be verified that
the strategies s(·) and s′(·) defined in the following manner
are both stable: (1) s(1) = 100, s(2) = 0, s(3) = 100,
s(1, 2, 1) = 0, s(1, 2, 2) = 100, s(3, 2, 1) = 0, s(3, 2, 2) =
100, s(2, i, �) = 0 for all i, �; and (2) s′(1) = 100,
s′(2) = 100, s′(3) = 100, s′(1, 2, 1) = 0, s′(1, 2, 2) = 50,
s′(3, 2, 1) = 0, s′(3, 2, 2) = 50, s′(2, i, �) = 0 for all i, �.
We have cost(s) = 200 and cost(s′) = 300.

For a graph G = (V,E), a subset S ⊆ V of nodes is
a dominating set of G if for each j ∈ V , either j ∈ S or
N(j) ∩ S �= φ, where N(j) = {i : (i, j) ∈ E} is the set
of neighbors of j. We observe below that in any instance of
HSTOCKPILE, the nodes which maintain a stockpile form a
dominating set of the graph.

Observation 2. Suppose Ci < pPr�[D(i, �) > 0] for all
i ∈ V . Then, for any stable strategy s(·) for an instance
(G, cap,C,D, p) of HSTOCKPILE, the set S = {i : s(i) >
0} of nodes with positive stockpile forms a dominating set of

G.

Proof. From Lemma 1, it follows that for each node i,
Pr�[def(i, �)] = Ci

p < Pr�[D(i, �) > 0]. This implies that
for each node i, there exists at least one scenario � for which
def(i, �) < D(i, �). This can happen if s(i, �) > 0 (i.e., node
i uses its stockpile) or sin(i, �) > 0 (i.e., node i purchases
from neighbors to reduce its deficits). In other words, each
node i either maintains a stockpile, or purchases from a neigh-
bor. Therefore, the set S = {i : s(i) > 0} is a dominating
set for G.

From a policy planner’s perspective, the number of nodes
which maintain a stockpile is important. Finding stable strate-
gies which minimize this number is hard.

Lemma 3. For an instance (G, cap,C,D, p) of HSTOCK-
PILE, and parameters k,B determining if there exists a stable
solution of cost at most B, in which at most k nodes have
stockpiles is NP-complete.

Proof. It is easy to see that the problem is in NP. We show
hardness by reduction from the bipartite graph dominating set
problem: an instance of this is a bipartite graph G = (V1 ∪
V2, E) and a parameter k, and the problem is to determine if
there exists a subset S ⊂ V1 with |S| � k which dominates
V2.

We construct an instance of HSTOCKPILE in the following
manner: the hospital network is G. We have one scenario
� ∈ D corresponding to each � ∈ V2 with q� = 1/|V2|. In
scenario �, we have D(�, �) = M , and D(i, �) = 0 for all
nodes i ∈ V1 ∪ V2 − {�}. We have Ci = 0 for all nodes
i ∈ V1, and Ci = C for all i ∈ V2. C, p are chosen such that
C < pM/|V2|. We have Cij = C ′ for all (i, j) ∈ E with
C < C ′ < p. We have cap(i, j) = M for all (i, j) ∈ E.

Suppose there exists a stable solution s(·) in this game
instance of cost 0, with stockpile at at most k nodes. In order
to have total cost 0, the nodes with stockpiles must all be in
V1, and all nodes must have all deficits 0. Let S ⊂ V1 denote
the set of nodes with positive stockpile. Then, |S| � k. Since
all nodes in V2 have 0 deficits, for each � ∈ V2, there exists
i ∈ V1 such that s(i, �, �) > 0. Therefore, S is a dominating
set for V2 of size at most k.

Next, suppose there exists a dominating set S ⊂ V1 of size
at most k. We set s(i) = |N(i)|M . For each � ∈ V2, there
exists i ∈ S such that (i, �) ∈ E. We set s(i, �, �) = M .
Then, s(·) is a stable strategy—no node i ∈ V1 has incentive
benefits by reducing or increasing its stockpile. Since Ci� <
p, node � ∈ V2 does not benefit by reducing the transfer, and
has no incentive to increase it, since its deficit is already 0.
Therefore s(·) is a stable strategy, and has cost 0.

Lemma 4. For any instance (G, cap,C,D, p) of HSTOCK-
PILE in which Ci = C for all i ∈ V , the price of anar-
chy is bounded by (maxi,� D(i, �))(

∑
(ij)∈E cap(i, j)). In

the absence of capacity constraints, there exist instances of
HSTOCKPILE, for which the price of anarchy is unbounded.

Proof. (Sketch) Let s∗(·) denote the strategy with the min-
imum cost. Let Ij denote restricted to node j—this con-
sists of a graph with the single node j, with stockpiling cost
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Cj = C, and demands D(j, �) with probability q�. Let
OPTi denote the minimum cost of any strategy for Ij . Then,
cost(s∗) � maxj OPTj . Next, consider any stable strategy
s(·). For any node j, sout(j, �) �

∑
(ij)∈E cap(i, j), and

cost(j, s) � Cmaxj,� D(j, �).
Next, suppose there are no capacity constraints. Consider

a star graph G on n nodes {1, 2, . . . , n}, with node 1 being
the center of the star. We have D with n− 1 scenarios, each
corresponding to node j = 2, . . . , n−1. Let D(�, �) = M for
� = 2, . . . , n and D(j, �) = 0 for all j �= �. Also, q� = 1

n−1 .
Let s(·) be a strategy vector such that s(j) = 0 for all j > 1,
s(1) > (n − 1)M , and s(1, �, �) = s(1). We have Ci = C
and p � C(n − 1). Then, cost(s) = s(1)C. Also, s(·) is
stable, since node 1 has negative cost, and therefore, has no
incentive to reduce s(1, j, �) for any j, �. On the other hand,
each node j > 1 has no incentive to increase s(1, j, �). Next,
consider a strategy vector s′(·) that has s′(j) = M for all
j = 2, . . . , n − 1, s′(1) = 0, and s′(i, j, �) = 0 for all i, j.
Then, s′(·) is also a stable solution because C � p/(n− 1),
so that no node j > 1 has incentive to reduce s′(j). Since
this leads to zero deficit, no node has incentive to increase
its stockpile either. We have cost(s′) = (n − 1)M , so that
the price of anarchy is at least cost(s)/cost(s′) > s(1)

M(n−1) ,
which is unbounded.

Given a strategy s(·), we say that it is a local optimum
with respect to any changes in s(i), s(j) and s(i, j, �) for any
i, j, � if cost(s) � cost(s′) for any strategy s′(·) such that:
(a) s′(k) = s(k), for all k′ �= i, j, (b) for all i′, j′ such that
|{i′, j′} ∩ {i, j}| � 1, s′(i′, j′, �) = s(i, j, �).

Theorem 5. Let s(·) be a strategy profile such that cost(s)
is a local optimum with respect to any changes in s(i), s(j)
and s(i, j, �) for any choice of i, j, �. Then, s(·) is a stable
strategy. Conversely, if s(·) is stable, it is a local optimum.

Proof. We show that s(·) satisfies all the conditions of a
stable solution. Consider a node i. Let s′(·) be a strat-
egy that agrees with s(·) in all components, except possibly
s(i). Then, cost(i′, s′) = cost(i′, s) for all i′ �= i, since
s′(i′) = s(i′) and s′(i′, j, �) = s(i′, j, �) for all j, �, by defi-
nition of s′(·). Since s(·) is a local optimum, it follows that
cost(s) =

∑
j cost(j, s) � cost(s′) =

∑
j cost(j, s′), which

implies that cost(i, s) � cost(i, s′). Therefore, no node i has
incentive to unilaterally deviate.

Next, consider a pair of nodes i, j, and a strategy s′(·)
that possibly differs from s(·) in s(i), s(j), s(i, j, �), but
is identical to s(·) in all other components. Then, for
i′ �= i, j, cost(i′, s′) = cost(i′, s) because s′(i′) = s(i′)
and s′(i′, j′, �) = s(i′, j′, �), unless {i′, j′} = {i, j}. Since
s(·) is a local optimum, we have cost(s) � cost(s′), which
in turn implies that cost(i, s) + cost(j, s) � cost(i, s′) +
cost(j, s′). It follows that either (a) cost(i, s) � cost(i, s′)
and cost(j, s) � cost(j, s′) or (b) cost(i, s) < cost(i, s′) or
cost(j, s′). This implies that no pair of nodes i, j have incen-
tive to deviate. Therefore s(·) is a stable strategy.

Next, suppose s(·) is stable. Consider any s′(·) that differs
from s(·) in s(i), s(j), s(i, j, �), (j, i, �), but agrees on all
other components. This implies cost(i′, s) = cost(i′, s′) for

all i′ �= i, j. Since s(·) is stable, cost(i, s) + cost(j, s) �
cost(i, s′) + cost(j, s′). Together, this implies cost(s) �
cost(s′), so that s(·) is a local optimum.

This implies that any local optimum is a stable strategy. In
particular, the optimum is also stable.
Corollary 6. Let s∗(·) be a solution with the minimum pos-
sible cost. Then, s∗(·) is stable.

5 The social optimum and reducing the

deficit

We now show that optimal strategies s(·) can be computed
by linear programming.

min
∑

i

Cis(i) +
∑

i,�

q�pf(i, �) s. t.

s(i) =s(i, �) +
∑

j �=i

s(i, j, �), for all i, �

f(i, �) �D(i, �)− s(i, �)−
∑

j �=i

s(j, i, �)

+
∑

j �=i

s(i, j, �), for all i, �

f(i, �) �0, for all i, �
s(i) �0, for all i

s(i, �) �0, for all i, �
s(i, j, �) �cap(i, j), for all i �= j, �

s(i, j, �) �0, for all i �= j, �

Lemma 7. The solution s∗(·) computed by the above linear
program has the minimum cost.

Proof. From the constraints of the above program, it fol-
lows that f(i, �) � max{D(i, �)−s(i, �)−∑

j �=i s(j, i, �)+∑
j �=i s(i, j, �), 0}. Since the objective is to minimize∑
i Cis(i) +

∑
i,� q�pf(i, �), it follows that for each i, �,

f(i, �) will actually satisfy the above inequality by an equal-
ity. Next, the lower and upper bounds ensure that all s(i, j, �)
are feasible.

Recall that cost(i, s) = Cis(i)+
∑

�

∑
j �=i Cjis(j, i, �)−∑

�

∑
j �=i Cijs(i, j, �)+

∑
� q�pdef(i, �). Therefore, the com-

ponents Cijs(i, j, �) contribute a positive term to cost(i, s),
and a negative term to cost(j, s). These cancel out in∑

i cost(i, s), and is precisely equal to the objective func-
tion of the above program. Therefore, s∗(·) is a solution that
minimizes

∑
i cost(i, s). Finally, from Lemma 6, it follows

that s∗ is a stable solution, and the lemma follows.

Reducing deficits for a given strategy

We now consider the problem MINDEF of minimizing the
total deficit, given a specific strategy s(·), from a centralized
agency’s perspective. Formally, this problem is defined in the
following manner: Given an instance (G, cap,C,D, p) of
HSTOCKPILE, a specific strategy s(·), budget B and a bound
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Figure 3: A hospital network induced by some of the largest
hospitals in North Carolina.

k, the objective of the MINDEF(s,B, k) problem is to select
an additional stockpile vector ŝ, such that

1.
∑

i ŝi � B and |{i : ŝi > 0}| � k, which captures
the constraint that a centralized agency can only send the
supplies to a bounded number of hospital nodes.

2.
∑

i def(i, s+ ŝ) is minimized.

The MINDEF problem turns out to be very hard in general,
as discussed below.

Lemma 8. The MINDEF(s,B, k) problem is NP-hard.

6 Experimental Results

We study the HSTOCKPILE formulation on a hospital network
formed by the ten largest hospitals in the state of North Car-
olina, as shown in Figure 3. All of these hospitals are Level I
or Level II trauma centers that would reasonably be expected
to provide patient care during a public health emergency. We
assume a completely connected undirected network between
these ten hospitals, with the cost of sharing supplies between
hospitals dictated solely by the distance between them. This,
in effect, creates a network with several clusters of hospitals
that can share easily—those within the “Triangle” made up
of the cities of Raleigh, Durham and Chapel Hill, as well
as those in the cities of Winston-Salem and Greensboro—as
well as more distant hospitals who will have a more difficult
time obtaining supplies from other hospitals. We choose the
cost Cij to be proportional to the distance d(i, j) between
the hospitals, and choose Ci = mini,j d(i, j). We vary the
penalty p.

Epidemics are inherently stochastic and unpredictable,
making the allocation of supplies a difficult problem. Stock-
piling strategies must be robust to both unexpectedly severe
outbreaks, such as the 2009 H1N1 influenza epidemic, as
well as less severe outbreaks that may not necessitate ex-
tensive stockpiles. To simulate this varying demand, we
simulate 1000 stochastic epidemics of a flu-like illness, us-
ing a variation of a Susceptible-Exposed-Infected-Recovered
(SEIR) epidemic model, where infected patients are subdi-
vided into ten compartments (Ij), indicating that the demand
for their care is the responsibility of Hospital j, allocated
proportionally based on a weight (κj). In one experiment,
this weight was proportional to the bed-size of the hospital,
and in another, the weight was assigned randomly.

dS
dt = −

βS
10∑

j=1
Ij

N

dE
dt =

βS
10∑

j=1
Ij

N − αE
dIj
dt = ακiE − γIj

dR
dt = γ

10∑
j=1

Ij

dN
dt = S + E +

10∑
j=1

Ij +R

We choose the parameters so that they correspond to
pandemic-grade flu, with the reproductive number R0 (which
corresponds to the expected number of secondary infections
caused by any individual) between 1.7 and 2.0 (Halloran et
al. 2008).

Figure 4 shows the stockpile levels for the social optimum
solution computed using the algorithm from Section 5 for the
ratio C/p varying from 0.5 to 1. The plots show the stockpile
levels and deficits for each of the ten hospitals. As the plots
show, at low penalties, the stockpile levels are much lower
than the expected deficits at individual hospitals. This is
flipped when the penalty p becomes much higher. We expect
a much higher variability for real datasets.

7 Conclusions and acknowledgements

We formalize the hospital stockpiling game problem
(HSTOCKPILE) with network capacity constraints as a non-
cooperative game, using the notion of pairwise Nash stability.
We show that stable solutions might still have fairly high lev-
els of deficits, and this motivates a deeper study of incentives
to reduce the deficits, including centralized stockpiling, and
changing penalties. The network structure has a significant
impact on these problems, and makes these problems compu-
tationally challenging. Our results suggest that other notions
of stability, which consider more general incentives for pairs
of nodes to deviate, might be needed for studying HSTOCK-
PILE. Extending our approach to incorporate more realistic
constraints are important open problems. This work has been
partially supported by the following grants: DTRA Grant
HDTRA1-11-1-0016, DTRA CNIMS Contract HDTRA1-11-
D-0016-0010, NSF ICES CCF-1216000, NSF NETSE Grant
CNS-1011769, NIH MIDAS Grant 5U01GM070694, NSF
DIBBS Grant ACI-1443054.
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